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Abstract We establish the existence of two weak coupling regime effective dynamics for
an open quantum system of repeated interactions (vanishing strength and individual interac-
tion duration, respectively). This generalizes known results (Attal and Joye in J. Stat. Phys.
126:1241–1283, 2007) in that the von Neumann algebras describing the system and the
chain element may not be of finite type. Then (but now assuming that the small system is
of finite type), we prove that both effective dynamics capture the long-term behavior of the
system: existence of a unique asymptotic state for them implies the same property for the
respective exact dynamics—provided that the perturbation parameter is sufficiently small.
The zero-th order term in a power series expansion in the perturbation parameter of such an
asymptotic state is given by the asymptotic state of the effective dynamics. We conclude by
working out the case in which the small system and the chain element are spins.

Keywords Repeated interaction quantum systems · Van Hove limit · Asymptotic state ·
Perturbation theory

1 Introduction

Recall that an open quantum system consists of a so-called small system S immersed in a
reservoir R, and that one is usually interested (perhaps by necessity) only in the observables
of S. In the repeated interaction model one assumes that the reservoir is an infinite chain of
identical subsystems {En}n∈N, called chain elements, which interact with S sequentially, one
at a time, in the order given by their labels n ∈ N. Here we will suppose that:

– The time that S spends interacting with each En—which could depend on n or even be
random—is actually constant, equal to τ > 0.
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– The way in which S interacts with each En is also independent of n.
– All chain elements are initially in the same state.

More general models can be considered, as in [7, 8].
Repeated interaction systems (RISs) have been used in connection with several domains,

including quantum optics [15] (in particular, regarding quantum state preparation [16]) and
quantum noises [2, 4, 5]. From an open systems point of view, they are interesting be-
cause of their mixture of simplicity—they have, by construction, a Markovian nature—and
thermodynamical non-triviality. Since not much is known about statistical physics far from
equilibrium, that makes them a promising source of examples and inspiration; nevertheless,
their rigorous study is just in its beginnings. In this article, we focus on their perturbative
analysis: we address the question of existence of van Hove effective dynamics and its use in
studying the eventual asymptotic states, as we explain in what follows.

To place things in context, let us recall some known results about open systems with
time-independent Hamiltonian. In general, the evolution restricted to the small system satis-
fies a complicated integro-differential equation, and one is interested in finding asymptotic
regimes in which the resulting effective dynamics is simpler. One possibility is to assume
that the coupling between the small system and its environment is small, in which case one
must rescale time so as to see the effects of the interaction: the dynamics is, then, composed
of a fast part coming from the free evolution, and a slow part coming from the interaction.
As it turns out, those dynamics decouple in the limit: the slow part, called van Hove limit,
becomes Markovian; the fast one becomes noise, which is the reason why the weak coupling
regime is also called stochastic limit [1]. The mathematical study of the van Hove limit was
begun by Davies [10] in 1974. The fact that the slow dynamics exists (at least in some cases)
can be seen as one justification for the use of master equations when studying open systems.
The procedure which gives the generator of the effective dynamics can be understood as a
dynamical Fermi golden rule; see [12] for an exposition of the subject. An interesting, some-
what unexpected result is the following: if the original system has an asymptotic state, then
it is well approximated by the asymptotic state of its van Hove limit. Additional information
on the subject can be found in [14].

The study of weak coupling regimes in the case of RISs was begun by Attal and Joye [3].
As we will see later, there are at least two such regimes in this context: calling λ the strength
of the interaction, one has the cases λ → 0, and τ → 0 as λ2τ → 0. In [3], the existence of
the slow dynamics is established for both regimes, under the hypothesis that both the small
system and the chain element are finite-dimensional. They also study a third regime (τ → 0
while λ2τ is kept constant) which is not perturbative anymore; it has the interesting feature
that one can always adjust the model in such a way that the effective dynamics is generated
by any prescribed Lindbladian.

Our objective in this article is two-fold:

– To generalise the results in [3] to the infinite-dimensional case.
– To study the extent to which the previously described relation between asymptotic states

of a given system and its van Hove limit holds for RISs.

The precise meaning of asymptotic state in this context is provided by Bruneau, Joye and
Merkli [9] who have proved, assuming that the small system is finite-dimensional and under
an ergodicity hypothesis, that any given initial state of the small system converges, when
t → ∞, towards a unique time-periodic state. It is to be noted that this is not a state of
thermal equilibrium, to start with because it is not constant, but above all because it has a
non-vanishing entropy production; this justifies the claim above about the thermodynamical
non-triviality of RISs.
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2 Mathematical Setup

Let MS and ME be two von Neumann algebras, meant to describe the small system and
one individual chain element. Let αt

S : MS → MS and αt
E : ME → ME be the ∗-weakly-

continuous groups of automorphisms which correspond to their free evolutions. We will
suppose that MS and ME are mutually commuting subalgebras of a larger von Neumann
algebra M which is generated by them.1 This permits to extend αt

S, α
t
E : M → M ; we denote

the derivations which generate these extended groups by δS and δE , respectively, and we
denote αt

Sα
t
E simply by αt

SE . We write ES and EE for the set of normal states of MS and ME ,
respectively.

Given a self-adjoint element v ∈ M , consider the perturbed dynamics ϕt
SE generated by

the derivation δS + δE + iλ[v, ·]. It is explicitely given by the convergent series

ϕt
SE =

{
IdM +

∑
k≥1

(iλ)kϕt
SE,k

}
αt

SE, (1)

where the ϕt
SE,k are given by the ∗-weakly-convergent integrals

ϕt
SE,k =

∫ t

0
dtk · · ·

∫ t2

0
dt1 α

t1
SE[v, ·]α−t1

SE · · ·αtk
SE[v, ·]α−tk

SE . (2)

We are interested in the repeated interaction evolution restricted to the small system, under
the assumption that all chain elements are initially in the β-KMS state ωE ∈ EE . Therefore,
we consider

ϕt
res = (

ESϕ
τ
SE

)n
ESϕ

t1
SE

∣∣
MS

: MS → MS, (3)

where n ∈ N, t1 ∈ [0, τ [, t = nτ + t1 and ES : M → MS is the conditional expectation given
by

ES(xSxE) = xSωE(xE), ∀xS ∈ MS,xE ∈ ME. (4)

Remark 1 The existence of ES follows from the fact that, under the isomorphisms MS
∼=

MS ⊗ 1E , ME
∼= 1S ⊗ ME and M ∼= MS ⊗ ME , it can be written as the composition

MS ⊗ ME

IdMS
⊗ωE−−−−−−−→ MS ⊗ C ∼= MS

(·)⊗1E−−−−→ MS ⊗ ME.

Equation (3) defines a ∗-weakly continuous family of completely positive maps. Observe
that the semigroup property fails, since ϕt

res gives the correct time evolution only if we start
at times which are integer multiples of τ . Note, however, that one can define in the obvi-
ous way a two-parameter family {ϕt1,t2

res }t1≤t2∈R satisfying ϕt
res = ϕ0,t

res and ϕ
t1,t2
res ϕ

t2,t3
res = ϕ

t1,t3
res ,

for all t1 ≤ t2 ≤ t3. This is also related to the fact that our intuitively correct formula for
time evolution can be obtained by exponentiation of a time-dependent Hamiltonian—which
would be somewhat more rigorous. In fact, one could consider the von Neumann algebra
which describes simultaneously the small system and the entire chain, and define there a
Hamiltonian which, depending on the instant of time, makes the small system interact with
the adequate chain element. One would obtain a piecewise constant generator whose expo-
nentiation, after composition with the right conditional expectation projecting onto the small

1This amounts to identifying MS
∼= MS ⊗ 1E , ME

∼= 1S ⊗ ME and letting M = MS ⊗ ME .
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system, coincides with ϕt
res. We will omit the simple but lengthy and notationally involved

proof of this fact, because it does not give any insight on the problems which concern us in
this work. For more details, see [3, 9].

To simplify the study of the weak coupling regime, we will impose a condition on the
perturbation v ∈ M which ensures that there are no first order effects:

(H1) There exists a projection p0 ∈ ME , invariant under αt
E , such that

v = p0v(1 − p0) + (1 − p0)vp0.

Remark 2 First order effects (as can be seen from the Dyson series) do not reflect an in-
fluence from the environment: they come from the part of the perturbation which can be
interpreted as modifying the free dynamics of the small system.

One can think of p0 as the projection onto the first eigenspace of δE , which could be
interpreted as an absolute vacuum state. In this case, Hypothesis (H1) is loosely saying
that the small system and the chain element interact only through creation and annihilation
processes at the chain level. To see this in more detail, we refer the reader to [3], where
an interaction which precisely falls within this description is considered. But Hypothesis
(H1) can perfectly apply in other, different situations, where the interpretation just given
is not adequate. We should warn, however, against one potentially tempting interpretation:
by GNS construction we can always assume that ωE(x) = 〈	E,x	E〉, with 	E belonging
to a Hilbert space on which ME acts. The projection |	E〉〈	E | cannot take the role of p0

because it does not belong to ME .

Proposition 1 The linear operator

T (λ, τ ) = ESϕ
τ
SE

∣∣
MS

∈ B(MS) (5)

is completely positive, normal and ‖T (λ, τ )‖ = 1. Moreover, given τ > 0, the map λ �→
T (λ, τ ) is analytic and, if the hypothesis (H1) holds, it is also even.

Proof The convergence of the Dyson series shows that λ ∈ R �→ ϕτ
SE ∈ B(M) is analytic; it

follows that λ �→ T (λ, τ ) is analytic too, since

F ∈ B(M) �→ ESF |MS
∈ B(MS)

is linear and bounded (observe that ES , being a conditional expectation, has norm 1). Com-
plete positivity and normality are a consequence of the fact that ES and ϕt

SE have these
properties. Since T (λ, τ )1 = 1, by general properties of completely positive maps we also
have that ‖T (λ, τ )‖ = 1.

Let us check the parity. Under the hypothesis (H1), the invariance of p0 under the free
evolution αt

E implies—thanks to the KMS condition—that

ES(p0xSxE) = ωE(p0xE)xS

= ωE

(
xEα

iβ
E (p0)

)
xS

= ωE(xEp0)xS

= ES(xSxEp0), ∀xS ∈ MS,xE ∈ ME.
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Hence,

ES(x) = ES(p0xp0) + ES((1 − p0)x(1 − p0)), ∀x ∈ M.

Using this, all we have to do is prove that, for all odd k and xS ∈ MS ,

p0ϕ
τ
SE,k(xS)p0 = (1 − p0)ϕ

τ
SE,k(xS)(1 − p0) = 0,

where ϕt
SE,k is defined in (2). But this follows again from the invariance of p0 and the

relations

p0[v, xS] = p0vxS(1 − p0) − p0xSv(1 − p0)

= [v, xS](1 − p0),

[v, xS]p0 = (1 − p0)[v, xS],

which are a consequence of the fact that p0 and xS commute. �

3 Van Hove Limit

Schematically, we are concerned with the study of an operator of the form

(P eτ(A+λB)P )n ≈ [(1 + τO(λ2τ))eτA]n (6)

where P is a projection, A the generator of a group of isometries, B a perturbation and
n ∈ N. Note that the parameter that determines the perturbative nature of a given regime is
λ2τ ; thus, we can immediately identify three different perturbative regimes:

1. τ is kept constant, in which case λ must go to zero.
2. τ → 0. Now, λ can go to zero, remain bounded or even diverge—provided λ2τ → 0.
3. τ → ∞ and λ2τ → 0.

In this article we treat the first two cases. The third one, which is a priori out of the reach of
our method, seems to oscillate with τ (the example of Sect. 5 gives some evidence of this).

To identify the adequate time scale of an effective dynamics in each of these regimes, note
that the approximation (6) is likely to become useless when n ≈ 1/(λ2τ 2)—that is, when
t = nτ ≈ 1/(λ2τ). Therefore, the appropriate time scale should be s = λ2τ t , irrespective of
the perturbative regime which is being considered.

3.1 A Preliminary Result

Here we state a simple generalization of a theorem by Davies [11], which is an abstract weak
coupling dynamics existence result.

Theorem 1 Let X be a Banach space, A0 : domA0 ⊂ X → X the generator of a strongly
continuous group of isometries and A1 : R → B(X) a norm-continuous map. Suppose that

s-lim
T →∞

1

T

∫ T

0
dt etA0A1(0)e−tA0
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exists and denote it by A1(0)
. Then, defining A(ε) = A0 + εA1(ε), we have that

lim
ε→0

sup
s∈[0,s0]

∥∥∥(
esA(ε)/εe−sA0/ε − esA1(0)


)
x

∥∥∥ = 0,

for any s0 > 0 and x ∈ X.

Proof Davies proved this result when A1(ε) is actually constant; we will get the general
case as a consequence, by showing that

lim
ε→0

sup
s∈[0,s0]

∥∥esA(ε)/ε − es(A0+εA1(0))/ε
∥∥ = 0

and using the triangle inequality. By Duhamel’s formula,

esA(ε)/ε − es(A0+εA1(0))/ε

=
∫ s

0
ds1 es1A(ε)/ε(A1(ε) − A1(0))e(s−s1)(A0+εA1(0))/ε.

Now, apply the Dyson expansion and use Remark 11 to get the estimate

∥∥es1A(ε)/ε
∥∥ = ∥∥es1(A0/ε+A1(ε))

∥∥ ≤ 1 +
∑
k≥1

sk
1

k! ‖A1(ε)‖k,

which by continuity is bounded uniformly in ε. Similar considerations apply to
‖e(s−s1)(A0+εA1(0))/ε‖, from which the claim follows. �

Remark 3 The strong limit

A1(0)
 = s-lim
T →∞

1

T

∫ T

0
dt etA0A1(0)e−tA0

is the so-called spectral averaging of A1(0) with respect to the spectrum of A0. There are at
least two known conditions which ensure its existence [12], namely:

1. A0 admits a total set of eigenvectors, and
2. A1(0) is compact and X is a Hilbert space.

In the first case, A1(0)
 is equal to

∑
n

PnA1(0)Pn,

where the Pn’s are the spectral projections of A0 and the sum converges strongly. Observe
that it is, in a sense, the part of A1(0) which commutes with A0—and this interpretation
holds whenever the strong limit A1(0)
 exists.

3.2 The Regime λ → 0

To use Theorem 1 in the repeated interaction case we start by restricting our attention to
the discrete semigroup consisting of integer powers of T (λ, τ ); otherwise said, we regard
only times which are integer multiples of τ . The only problem then is to “interpolate” the
semigroup {T (λ, τ )n}n∈N to continuous time.
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Theorem 2 Suppose that Hypothesis (H1) holds, as well as

(H2a) The spectrum of ατ
S is not dense in the circle S1 ⊆ C.

Let � ⊆ C be a curve with deg(�,0) = 0 which encircles the spectrum of ατ
S , choose

a branch of logarithm analytic in the interior of �, and define

A0 = 1

2π i

∫
�

dz log(z)(z − ατ
S)

−1.

Assume, finally, that
(H3a)

(ESϕ
τ
SE,2)


 = s-lim
T →∞

1

T

∫ T

0
dt etA0ESϕ

τ
SE,2e−tA0

exists.
Then, the norm-continuous contraction semigroup

ϕs
eff = e−s(ESϕτ

SE,2)
 : MS → MS

satisfies

lim
λ→0

sup
s∈[0,s0]

∥∥∥(
T (λ, τ )�s/(λ2τ)�α−τ�s/(λ2τ)�

S − ϕs
eff

)
x

∥∥∥ = 0,

for all s0 > 0. Here, �·� denotes the integer part of its argument.

Proof Recall that T (λ, τ ) = ESϕ
τ
SE

∣∣
MS

, whence T (0, τ ) = ατ
S and there exists an ε > 0 such

that the curve � encircles the spectrum of T (λ, τ ), for all λ2 < ε. Define A :]−ε, ε[→ B(M)

by

A(λ2) = 1

2π i

∫
�

dz log(z)(z − T (λ, τ ))−1,

which gives an analytic function since the dependence of T in λ is quadratic. Assuming that

A′(0)
 = s-lim
T →∞

1

T

∫ T

0
dt etA0A′(0)e−tA0

exists, Theorem 1 would provide the conclusion with ϕs
eff = esA′(0)
 . Therefore, we have to

prove that A′(0)
 exists and is equal to −(ESϕ
τ
SE,2)


. To do that, recall that

T (λ, τ ) = ατ
S − λ2

ESϕ
τ
SE,2α

τ
S + O(λ4)

=: ατ
S + λ2T2 + O(λ4).

Hence,

A′(0)
 = s-lim
T →∞

1

T

∫ T

0
dt

1

2π i

∫
�

dz log(z)(z − ατ
S)

−1

× etA0T2e−tA0(z − ατ
S)

−1

= 1

2π i

∫
�

dz log(z)(z − ατ
S)

−1
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×
(

s-lim
T →∞

1

T

∫ T

0
dt etA0T2etA0

)
(z − ατ

S)
−1

= T



2

1

2π i

∫
�

dz log(z)(z − ατ
S)

−2

= T



2

d

dz

∣∣∣∣
z=ατ

S

log(z)

= (−ESϕ
τ
SE,2α

τ
S)


α−τ
S = −(ESϕ

τ
SE,2)


.

The integration order can be reversed, since the integrand and the domain of integration
are both bounded; the same argument justifies the exchange of strong limit and complex
integral. Note that Hypothesis (H3a) ensures the existence of the limit. �

Remark 4 The spectral projections of A0 (which is always bounded) do not necessarily
coincide with those of δS , so that ϕs

eff and αt
S do not necessarily commute. An extreme case

of this would be a harmonic oscillator with energy spectrum {2πn/τ : n ∈ N}. Then, if we
take log reit = log r + it with t ∈] − π,π [, we get A0 = 0.

Remark 5 In [3], Attal and Joye prove Theorem 2 when the Hilbert spaces HS and HE upon
which MS and ME act, respectively, are finite dimensional. Their method consists in solving
explicitely the equation

T (λ, τ ) = eτ(A0+λ2A1) + O(λ4), (7)

where A0 and A1 are the unknowns. Our method, although conceptually simpler, is essen-
tially the same. Note that the use of a logarithm makes things easier but does not provide
an optimal result, since in infinite dimension it might be possible that equation (7) admits a
solution, even if the spectrum of ατ

S is dense in the unit circle.

Theorem 2 actually allows one to understand the behavior of ϕt
res for λ � 1 and arbi-

trary t � 1/λ2; in other words, the restriction to times which are integer multiples of τ is
immaterial.

Corollary 1 Under the same hypothesis of Theorem 2, the contraction semi-group ϕs
eff :

MS → MS satisfies also

lim
λ→0

sup
s∈[0,s0]

∥∥∥(
ϕs/λ2

res α
−s/λ2

S − ϕs
eff

)
x

∥∥∥ = 0, ∀s0 > 0.

Proof Indeed, writing s/λ2 = nτ + t1 with n = �s/(λ2τ)�, one has
∥∥∥ϕs/λ2

res α
−s/λ2

S − ϕs
eff

∥∥∥ =
∥∥∥T (λ, τ )n

ESϕ
t1
SEα

−(nτ+t1)

S − ϕs
eff

∥∥∥
≤ ∥∥T (λ, τ )nα−nτ

S − ϕs
eff

∥∥
+ ∥∥T (λ, τ )n

ES

(
ϕ

t1
SEα

−t1
S − IdM

)
α−nτ

S

∥∥ .

The first term is controlled by Theorem 2, while, using the Dyson expansion, Remark 11
and the fact that ESϕ

t1
SE,1 = 0, the second is bounded by

∥∥ES(ϕ
t1
SE − α

t1
SE)

∥∥ ≤ f2(λ
2τ)λ2τ. �
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3.3 The Regime τ → 0, λ2τ → 0

This regime is, analytically, somewhat more delicate, because one has to control the depen-
dence in τ of the error as λ2τ → 0. That prevents us from just using functional calculus as in
the previous subsection. In [3], Attal and Joye use a refined, but finite dimensional, version
of Theorem 1 to deal with this; however, their proof cannot be easily extended to the infinite
dimensional case. We take a different approach, which consists essentially in regrouping the
error terms so that one can apply Theorem 1 directly.

Lemma 1 Given constants λ0, τ0 > 0, we say that λ and τ are admissible if

τ ∈ [0, τ0], λ2τ ∈ [0, λ2
0τ0].

Suppose that there exists some C0 > 0 such that, for all admissible λ and τ ,
∥∥T (λ, τ ) − {1 + λ2τ 2A1}ατ

S

∥∥ ≤ C0λ
2τ 3,

where A1 ∈ B(MS) is such that t �→ αt
SA1α

−t
S is norm continuous. Then, again for all ad-

missible λ and τ ,

sup
0≤s≤s0

∥∥ϕs/(λ2τ)
res − es(δS+λ2τA1)/(λ2τ)

∥∥ = O(τ),

where s0 > 0 is arbitrary.

Proof Thanks to the Dyson series, with ε = λ2τ in the notation of Appendix 5,

T (λ, τ ) − eτ(δS+λ2τA1)

=
{
λ2τ 2A1 − λ2τ

∫ τ

0
dt αt

SA1α
−t
S

}
ατ

S + E(λ, τ),

where, using the function f2 defined in (8),

‖E(λ, τ)‖ ≤ C0λ
2τ 3 + f2(λ

2τ 2)(λ2τ)2τ 2 = O(λ2τ 3).

Moreover, by continuity of t �→ αt
SA1α

−t
S ,

∫ τ

0
dt αt

SA1α
−t
S = τA1 + O(τ 2)

and we conclude that, for all admissible λ and τ ,∥∥∥T (λ, τ ) − eτ(δS+λ2τA1)
∥∥∥ ≤ C1λ

2τ 3,

where the constant C1 depends only on C0, λ0, τ0 and A1. Now, a standard telescope expan-
sion shows that∥∥∥∥T (λ, τ )m − [

eτ(δS+λ2τA1)
]m

∥∥∥∥

=
∥∥∥∥

m∑
k=1

T (λ, τ )k−1
(
T (λ, τ ) − eτ(δS+λ2τA1)

)[
eτ(δS+λ2τA1)

]m−k

∥∥∥∥
≤ m

∥∥∥eτ(δS+λ2τA1)
∥∥∥m

O(λ2τ 3).
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But we also have, this time using the Dyson series with ε = λ2τ 2, that

∥∥∥eτ(δS+λ2τA1)
∥∥∥ ≤ 1 + C2λ

2τ 2, C2 = f1(λ
2τ 2),

whence
∥∥∥∥T (λ, τ )m − [

eτ(δS+λ2τA1)
]m

∥∥∥∥
≤ C1s0τ

(
1 + C2λ

2τ 2
)s/(λτ)2

≤ C1s0τes0 log(1+C2λ2τ2)/(λτ)2 = O(τ).

We conclude by observing that, writing s/(λ2τ) = mτ + t1 with m = �s/(λτ)2�,

∥∥∥∥ϕs/(λ2τ)
res − [

eτ(δS+λ2τA1)
]s/(λτ)2

∥∥∥∥
≤

∥∥∥T (λ, τ )m
(
α

t1
S − et1(δS+λ2τA1)

)∥∥∥
+

∥∥∥(
T (λ, τ )m − emτ(δS+λ2τA1)

)
et1(δS+λ2τA1)

∥∥∥
≤ f1(λ

2τ 2)λ2τ 2 + O(τ)
(
1 + f1(λ

2τ 2)λ2τ 2
)
,

which is of O(τ) for all admissible λ and τ . �

Theorem 3 Suppose that Hypothesis (H1) holds, as well as

(H2b) (ES[v, ·]2)
 = s-limT →∞ 1
T

∫ T

0 dt αt
SES[v, ·]2α−t

S exists,
(H3b) t ∈ R �→ αt

SE[v, ·]α−t
SE ∈ B(M) is norm continuous.

Let τn, λn ≥ 0 be two sequences such that τn → 0, λ2
nτn → 0. Then, the semigroup ϕs

eff =
e− s

2 (ES [v,·]2)
 : MS → MS satisfies

lim
n→∞ sup

0≤s≤s0‖x‖≤1

(
ρ,

(
ϕ

s/(λ2
nτn)

res α
−s/(λ2

nτn)

S − ϕs
eff

)
x
)
(MS)∗,MS

= 0,

for all fixed ρ ∈ (MS)∗ and s0 > 0.

Proof Observe, first, that by continuity of t �→ α−t
SE[v, ·]αt

SE one has

ϕτ
SE,2 =

∫ τ

0
dt2

∫ t2

0
dt1α

t1
SE[v, ·]αt2−t1

SE [v, ·]α−t2
SE

= τ 2

2
[v, ·]2 + O(τ 3),

since linear operator composition B(M) × B(M) → B(M) is norm-continuous. There-
fore, using Dyson’s expansion and the evenness of T (λ, τ ) in λ, one finds that T (λ, τ )

equals
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ES

{
1 + (iλ)2

(
τ 2

2
[v, ·]2 + O(τ 3)

)}
ατ

SE + O(λ4τ 4)

=
{

1 − λ2τ 2

2
ES[v, ·]2

}
ατ

S + O(λ2τ 3),

where we have used the fact that ESα
t
SE = αt

SES and O(λ4τ 4) is, actually, O(λ2τ 3) when
λ ≤ Cτ−1/2. To apply Lemma 1 we have to check that

t �→ αt
SES[v, ·]2α−t

S = ES

(
αt

SE[v, ·]α−t
SE

)2
ES

is continuous, which is direct by hypothesis.
To conclude we would like to use Theorem 1, but the group

et (δS− λ2τ
2 ES [v,·]2) : MS → MS

is only ∗-weakly-continuous; we have to show that it admits a predual, which then by def-
inition would be strongly continuous. But we know that δS admits a predual (the generator
of the strongly continuous group (αt

S)∗), and therefore it suffices to see that (ES[v, ·]2)∗ :
M∗

S → M∗
S leaves the sub-space of ultraweakly continuous forms invariant. Now, for that

it is enough that ES[v, ·]2 : MS → MS be ultraweak-ultraweak continuous, and, since ES is
positive and normal, all we have to do is prove that the operations MS → M of left and
right multiplication by elements of M are ultraweak-ultraweak continuous—which is an
elementary property of the ultraweak topology, concluding the proof. �

Remark 6 When the small system and the chain element are finite-dimensional, the hypoth-
esis on the continuity of αt

SE[v, ·]α−t
SE always holds; hence, this theorem is a generalization

of the one in [3].

4 Asymptotic State

In this section we will suppose that the von Neumann algebra MS is of finite type In—that
is, isomorphic to Mn(C). Recall that in this case all semigroups are automatically norm-
continuous.

The expression “asymptotic state” in the context of quantum dynamics presupposes that
the system is being studied in the Schrödinger picture; if we actually have a completely
positive semigroup ϕt : MS → MS , the evolution of states is given by

ωt(x) = ω0(ϕ
t (x)), x ∈ MS, ω0 ∈ ES.

Now, the convergence ωt →
t→∞ω∞ for every state ω0 implies the weak convergence of ϕt(x)

towards a limit P (x) which defines a linear function P : MS → MS . Note that P (x) must be
a multiple of the identity, because otherwise ω0(P (x)) would depend on ω0; therefore,

ϕt →
t→∞P, P (x) = ω∞(x)1.

Conversely, the convergence of ϕt to a rank-one projection P : MS → MS (whose range
must be C1 ⊆ MS since ϕt (1) = 1) implies the existence of a unique asymptotic state.
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In the case of repeated interaction systems, one must take into account the fact that the
asymptotic state, if it exists, is, in general, τ -periodic [9]; an obvious necessary condition for
its existence is, then, that T (λ, τ )n → P (λ). In the next subsection we study this situation
from an abstract viewpoint.

4.1 On the Analytic Perturbation Theory of Matrices

In this subsection we will suppose that T :] − ε0, ε0[→ Mn(C) is an analytic function such
that 1 ∈ specT (ε) and ‖T (ε)‖ = 1. The classical reference for this material is [13]. We start
with a lemma which lies at the heart of the section.

Lemma 2 For each ε ∈] − ε0, ε0[, let P (ε) be the spectral projection of 1 ∈ specT (ε).
Suppose that T (ε)n −−→

n→∞P (ε) when 0 < ε < ε0. Then,

1. 0 ∈ specP (0)T ′(0)P (0). Let Q be its spectral projection.
2. P (0)Q = QP(0), so P (0)Q is a projection, too.
3. P (0+) = limε↘0 P (ε) exists and is a sub-projection of P (0)Q.

Proof Let T̃ be an analytic extension of T to a complex neighbourhood of zero 	 ⊆ C.
We want to prove, in the terminology of [13], that 0 is not a branch point of 1 ∈ spec T̃ (0).
Since exceptional points are isolated, in any case we can suppose that there exist m analytic
functions P̃i : 	\] − ∞,0] → Mn(C), which are all spectral projections of T̃ , such that

P (0) =
m∑

i=1

P̃i(0).

Now, one of these spectral projections, say P̃1 =: P̃ , must correspond to the eigenvalue
1 ∈ specT (ε) and must therefore be an analytic extension of P . Suppose, by contradiction,
that 0 is a branch point of 1 of order p−1 ≥ 1. We know (see [13, Theorem 1.9]) that, in this
case, P̃ admits a Laurent expansion in powers of z1/p which necessarily contains negative
powers. However, by continuity of the norm, we have

‖P (ε)‖ = lim
n→∞‖T (ε)n‖ ≤ lim inf

n→∞ ‖T (ε)‖n = 1.

This means that, if we approach through the real positive axis, limε→0+ ‖P̃ (ε)‖ = 1. This is
a contradiction, and we conclude that 0 is not a branch point of 1. In particular, P̃ can be
further extended to an analytic continuation of P |]0,ε0[ defined on a complex neighbourhood
of 0 and P (0+) exists.

Making use of P̃ (z), each ξ0 ∈ P (0+)Cn yields an analytic choice ξ(z) = P̃ (z)ξ0 of
eigenvectors of T̃ (z) with eigenvalue 1. Now, the first order term in z in the equation
T̃ (z)ξ(z) = ξ(z) is

T (0)ξ ′(0) + T ′(0)ξ0 = ξ ′(0)

which, pre-multiplied by P (0), gives P (0)T ′(0)P (0)ξ0 = 0. In particular,

0 ∈ specP (0)T ′(0)P (0).

Let Q be its spectral projection. This means that Qξ0 = ξ0 for all ξ0 ∈ P (0+)Cn, and there-
fore that P (0+) = QP(0+).
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Next, we show that P (0+) = P (0+)Q. This follows from applying the same reasoning
above to the (real) analytic function T (ε)∗. In fact: it satisfies the hypothesis of the lemma;
the spectral projection of 1 ∈ specT (ε)∗ is P (ε)∗; and we have that

d

dε

∣∣∣∣
ε=0

T (ε)∗ = T ′(0)∗.

Therefore, we conclude that P (0+)∗ = Q∗P (0+)∗.
Finally, since Q is obtained by spectral calculus from P (0)T ′(0)P (0) and

[P (0),P (0)T ′(0)P (0)] = 0,

we have [Q,P (0)] = 0. To conclude, it only remains to show that

P (0)P (0+) = P (0+)P (0) = P (0+),

for in that case P (0+) = P (0+)P (0)Q = P (0)QP (0+). But again, the equation
P (0)P (0+) = P (0+) just amounts to saying that the elements in P (0+)Cn are eigenvec-
tors of T (0) with eigenvalue 1, and P (0+)P (0) = P (0+) follows from applying the same
reasoning to T (ε)∗. �

Remark 7 Note that, by analyticity of P̃ , one has P (ε) = P (0+) + O(ε) for ε > 0.

The next result, which has some independent interest, is an application of Lemma 2
relating the asymptotic states of a one-parameter semigroup and its van Hove limit.

Proposition 2 Let A : R → Mn(C) be an analytic function, with A(0) = ∑
akPk anti-

hermitic (we suppose that the ak’s are pairwise different), kerA(ε) �= {0} and ‖etA(ε)‖ = 1.
Suppose that

es
∑

PkA′(0)Pk →
s→∞Q,

with TrQ = 1. Then, there exists an ε0 > 0 such that

etA(ε) →
t→∞ Q + O(ε), ∀ε ∈]0, ε0].

Proof We first fix some notation: write

specA(ε) = {ai(ε) : i ∈ {0, . . . ,m}},
with ai : R → C continuous for all i. Since the null space of A(ε) is non-trivial, we can
suppose that a0 ≡ 0. We have the expansion

ai(ε) = ai(0) + ε1/pi λi + O(ε2/pi ),

where λi is an eigenvalue of
∑

PkA
′(0)Pk and pi ∈ N is the branching order of ai(0).

Recall that the hypothesis es
∑

PkA′(0)Pk →
s→∞Q is equivalent to

spec

(∑
PkA

′(0)Pk

)
\ {0} ⊂ {λ ∈ C : Reλ < 0},
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with 0 ∈ spec
∑

PkA
′(0)Pk being a semisimple eigenvalue (in fact, simple since TrQ = 1)

and Q its spectral projection. Hence, there exists an ε0 > 0 such that, except when i = 0,
Reai(ε) < 0 for all 0 < ε ≤ ε0. This ensures that etA(ε) converges to the spectral projection
of 0 ∈ specA(ε), which we will call P (ε). Now, we can make use of Lemma 2 with T (ε) =
eA(ε), obtaining that P (ε) = P (0+) + O(ε) for all 0 < ε ≤ ε0.

Finally, observe that

P0
d

dε

∣∣∣∣
ε=0

eA(ε)P0

= P0
d

dε

∣∣∣∣
ε=0

{
1 + ε

∫ 1

0
ds e−sA(0)A′(0)esA(0) + O(ε2)

}
eA(0)P0

= P0A
′(0)P0.

Hence, again thanks to Lemma 2, P (0+) is a sub-projection of Q. But TrQ = 1, so that
P (ε) = Q + O(ε) for all 0 < ε ≤ ε0. �

4.2 Application to Repeated Interaction Systems

We start with the regime λ → 0.

Theorem 4 Suppose that MS is of finite type In and that the effective dynamics ϕs
eff given

by Theorem 2 converges towards a projection P : MS → MS of rank 1. Then, there exists a
λ0 > 0 and a τ -periodic family ωt

λ ∈ ES such that

ω
(
ϕt

res(x)
) − ωt

λ(x) →
t→∞ 0,

for all 0 < λ ≤ λ0, ω ∈ ES and x ∈ MS . Moreover,

ωt
λ(x) = 1

n
Tr

(
Pαt

S(x)
) + O(λ2‖x‖).

Proof After the proof of Theorem 2 (whose hypothesis always hold in finite dimension), we
can write T (λ, τ ) = eτA(λ2) with A :] − ε0, ε0[→ B(MS) ∼= Mn2(C) analytic. Now, a direct
application of Proposition 2 (recall from Proposition 1 that ‖T (λ, τ )‖ = 1) gives

T (λ, τ )k →
k→∞

P + O(λ2) =: P (λ2).

Since 1 ∈ MS is a fixed point for T (λ, τ ), the image of P (λ2) is C1 ⊆ MS . The result follows
with

ωt
λ(x) = 1

n
Tr(P (λ2)ϕt

SE(x)).

Observe that ωt
λ(x) is τ -periodic, for

P (λ2)ϕτ
SE(x) = P (λ2)ESϕ

τ
SE(ESx) = P (λ2)x. �

Remark 8 The state x �→ 1
n

Tr(Pαt
S(x)) is also τ -periodic since P commutes with ατ

S and
PMS = C1.
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Now, we state the result for the regime τ → 0, λ2τ → 0. We face two extra difficulties:

1. T (λ, τ ) cannot be seen as a function of ε = λ2τ ; hence, in order to use Proposition 2,
one has to parametrize analytically the convergences τ → 0, λ2τ → 0.

2. Once we acknowledge the necessity of the previous step, it still has to be shown that one
can write T (λ(ε), τ (ε)) = eτ(ε)A(ε), with A analytic.

Lemma 3 The function T : (λ, τ ) ∈ R
2 �→ ESeτ(δS+iλ[v,·]) ∈ B(MS) ∼= Mn2(C) can be writ-

ten, for λ and τ small enough, as

T (λ, τ ) = eτF (λ2τ,τ ),

where F : R
2 → B(MS) is analytic in a neighbourhood of (0,0) and F(0,0) = δS .

Proof Indeed, we have the convergent power series expansion

eτ(δS+iλτ [v,·])

=
∞∑

n=0

τn

n!
n∑

k=0

(iλτ)k
∑

|α|=n−k

δ
α0
S [v, ·]δα1

S · · · δαk−1
S [v, ·]δαk

S ,

where the multiindex α belongs to N
k+1 and |α| = ∑k

i=0 αi . After composing with ES , the
terms with odd k vanish and we get

ESeτ(δS+iλτ [v,·]) = 1 +
∞∑

n=1

�n/2�∑
m=0

1

n!τ
n+m(iλ2τ)mCn,m,

Cn,m = ES

∑
|α|=n−2m

δ
α0
S [v, ·]δα1

S · · · δα2m−1
S [v, ·]δα2m

S .

Now, if λ and τ are small enough, the logarithm series

∞∑
N=1

(−1)N+1

N

( ∞∑
n=1

�n/2�∑
m=0

1

n!τ
n+m(iλ2τ)mCn,m

)N

converges and gives the existence of an F which is analytic and satisfies eτF (λ2τ,τ ) = T (λ, τ ).
Observe that C1,0 = δS , so that F(0,0) = δS . �

Theorem 5 Let λ(ε) and τ(ε), with ε ∈ R, be two meromorphic parametrizations of λ and
τ such that

λ(ε)2τ(ε) = ε, τ (ε) →
ε→0

0.

Suppose that MS is of finite type In and that the effective dynamics ϕs
eff given by Theorem 3

converges, as s → ∞, towards a projection P ∈ B(MS) of rank 1. Then, there exists a τ(ε)-
periodic family ωt

ε ∈ ES and an ε0 > 0 such that

ω
(
ϕt

res(x)
) − ωt

ε(x) →
t→∞ 0,
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for all ε ∈] − ε0, ε0[, ω ∈ ES and x ∈ MS . Moreover,

ωt
ε(x) = 1

n
Tr(Pαt

S(x)) + O(ε2‖x‖).

Proof Let F(λ2τ, τ ) be the analytic function given by Lemma 3 and consider the family of
one-parameter groups

t �→ etA(ε), A(ε) = F
(
λ(ε)2τ(ε), τ (ε)

) = F
(
ε, τ (ε)

)
.

Observe that A(ε) is analytic. In order to relate etA(ε) and ϕs
eff, fix s > 0 and let m(ε) =

�s/(λ(ε)τ (ε))2�, so that

s/(λ(ε)2τ(ε)) = m(ε)τ(ε) + t1(ε), 0 ≤ t1(ε) < τ(ε).

From now on, we will drop the dependence in ε of m,λ, τ and t1 (this should cause no
confusion). Write

∥∥T (λ, τ )mα−mτ
S − ϕs

eff

∥∥ =
∥∥∥ϕs/(λ2τ)

res α
−s/(λ2τ)

S − ϕs
eff

∥∥∥
+

∥∥∥T (λ, τ )mα−mτ
S − ϕs/(λ2τ)

res α
−s/(λ2τ)

S

∥∥∥ .

As ε → 0, the first term vanishes by Theorem 3 and the fact that we are dealing with (finite)
matrices. The second equals ∥∥α

t1
S − ESϕ

t1
SE

∥∥ →
ε→0

0.

Since T (λ, τ )mα−mτ
S = emτA(ε)e−mτA(0) and

∥∥esA(ε)/εe−sA(0)/ε − emτA(ε)e−mτA(0)
∥∥

= ∥∥emτA(ε)(et1A(ε)e−t1A(ε) − 1)e−mτA(0)
∥∥

≤ es supε≤ε0
‖A(ε)‖ ∥∥et1A(ε)e−t1A(ε) − 1

∥∥ →
ε→0

0,

what we get is that

ϕs
eff = lim

ε→0
esA(ε)/εe−sA(0)/ε.

By uniqueness of both limits and generators of semigroups, we see that − 1
2 (ES[v, ·]2)
 =

A′(0)
. Hence, we can apply Proposition 2 to conclude that there exists an ε0 > 0 such that

T
(
λ(ε), τ (ε)

)k →
k→∞

P + O(ε2) =: P (ε2),

for all ε ∈ ]−ε0, ε0[. The proof ends in the same way as that of Theorem 4. �

Remark 9 Since we ask from τ(ε) to be analytic around 0, we can as well just assume that
τ(ε) = εn, with n ≥ 1. Now, the restriction λ(ε)2τ(ε) = ε on the parametrizations of λ and
τ—which seems to be essential in our approach—implies that

λ(ε) = ε(1−n)/2
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(further restricting n to be odd), showing that our theorem cannot say anything of a regime
in which both λ and τ go to zero.

Remark 10 Let ε̃ ∈] − ε0, ε0[. The convergence

ω
(
ϕt+nτ

res (x)
) →

n→∞ωt
ε̃(x)

shows that ωε̃ depends on the values λ(ε̃) and τ(ε̃), but does not depend on the choice of
parametrizations.

This last remark suggests that Theorem 5 would be better stated without any reference to
the parametrizations. To this effect, we could consider the set

⋃
admissible

parametrizations

{
(λ(ε), τ (ε)) : ε ∈] − ε0, ε0[

}
,

where ε0 > 0 depends on the parametrization. However, we lack any description of this set
which does not actually mention the parametrizations; this is the reason why we prefer to
state Theorem 5 as we did.

5 A Concrete Example

In the simplest instance of a repeated interaction system, both the small system and the chain
element are spins. This case falls under the hypothesis of [3], in which the effective dynamics
for the regime λ → 0 is explicitely calculated (for some specific choice of the interaction).
Also, in [9], explicit conditions for the existence of an asymptotic time-periodic state are
found, and the asymptotic state itself is computed at zero-th order in λ2. Here, we illustrate
how this last result can be recovered as an application of Theorem 4.

Let us specify the model. We choose the representation

MS = ME = M2(C), HS = HE = C
2,

and suppose that the free evolution of observables is given by the Hamiltonians

hS =
(

0 0
0 S

)
∈ MS, hS =

(
0 0
0 E

)
∈ ME.

As for the interaction, we take

v =
(

0 1
0 0

)
⊗

(
a b

c d

)
+

(
0 0
1 0

)
⊗

(
ā c̄

b̄ d̄

)
∈ MS ⊗ ME.

Finally, we assume that the chain is initially in thermal equilibrium at inverse temperature
β; that is,

ωE

(
x00 x01

x10 x11

)
= x00 + x11e−βE

1 + e−βE
.
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To make calculations, let {ε0, ε1} be the canonical basis of C
2 and consider the basis of

M2(C) given by ukl = |εk〉〈εl|, with k, l,∈ {0,1}. We find that

αt
S(u00) = u00, αt

S(u01) = eitSu01,

αt
S(u10) = e−itSu10, αt

S(u11) = u11,

so that assuming that S �= 0 and that eiτS �= e−iτS , the spectral averaging in the formula for
the generator of the effective dynamics ϕs

eff must be taken with respect to the projections

P0 = P00 + P11, P+ = P01, P− = P10,

where Pkl = Tr(u∗
kl(·))ukl . Observe that, if τ is small enough, eiτS �= e−iτS .

Since we are interested in the asymptotic state of the effective dynamics when λ → 0,
we must compute the spectral projection of the kernel of

δeff := −(ESϕ
τ
SE,2)




= −P0ESϕ
τ
SE,2P0 − P−ESϕ

τ
SE,2P− − P+ESϕ

τ
SE,2P+.

Now, if 〈u01|δeff|u01〉 and 〈u10|δeff|u10〉 do not vanish, that spectral projection is, essentially,
the one of P0δeff|P0M2(C). Identifying P0M2(C) ∼= C

2 through the basis {u00, u11}, this oper-
ator is the 2 × 2 matrix ( 〈u00|δeff|u00〉 〈u00|δeff|u11〉

〈u11|δeff|u00〉 〈u11|δeff|u11〉

)
.

But 0 = δeff(1) = δeff(u00 + u11), so that this matrix has the form
( δ0 −δ0

−δ1 δ1

)
, with

δ0 = 〈u00|δeff|u00〉, δ1 = 〈u11|δeff|u11〉.
The spectral projection of its kernel is

Q = 1

δ0 + δ1

(
δ1 δ0

δ1 δ0

)
,

and we find that

δ0 = −2

1 + e−βE

{
e−βE |b|2 1 − cos τ(E − S)

(E − S)2
+ |c|2 1 − cos τ(E + S)

(E + S)2

}
,

δ1 = −2

1 + e−βE

{
|b|2 1 − cos τ(E − S)

(E − S)2
+ e−βE|c|2 1 − cos τ(E + S)

(E + S)2

}
.

We are in a position to compute the asymptotic state of the weak limit. As Theorem 4
ensures, it coincides at order zero with the one of the restricted dynamics, computed in [9].
As sufficient conditions for its existence we recover also the result in [9].

Proposition 3 Suppose that S �= 0 and |b|2 + |c|2 �= 0, and let ϕs
eff be the effective dynamics

given by Theorem 2. There exists some τ0 > 0 such that

ω(ϕs
eff(x))−→

s→∞
1

δ0 + δ1
Tr

((
δ1 0
0 δ0

)
x

)
,

for all ω ∈ ES , x ∈ MS and τ ≤ τ0.
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Proof Let x = ( x00 x01
x10 x11

) ∈ MS . The computations above show that—provided there is
convergence—

esδeff(x)−→
s→∞

δ1x00 + δ0x11

δ0 + δ1

(
1 0
0 1

)
.

It remains to see, for every small enough τ , that there is indeed convergence.
With respect to the basis {u00, u11, u01, u10},

δeff =
⎛
⎜⎝

δ0 −δ0 0 0
−δ1 δ1 0 0

0 0 〈u01|δeff|u01〉 0
0 0 0 〈u10|δeff|u10〉

⎞
⎟⎠ .

The eigenvalues of this matrix are

0, δ0 + δ1, 〈u01|δeff|u01〉 and 〈u10|δeff|u10〉,

and we have to check that, except for 0, their real part is strictly negative. Since |b|2 +|c|2 �=
0, one has that δ0 + δ1 = Re(δ0 + δ1) < 0. As for the others, up to order τ 2 we have that
Re〈u01|δeff|u01〉 equals

−τ 2

2(1 + e−βE)

{(
ā c̄

b̄ d̄

)(−c a − d

0 c

)
−

(−b̄ ā − d̄

0 b̄

)(
a b

c d

)

+ e−βE

(
a b

c d

)(−b̄ ā − d̄

0 b̄

)
− e−βE

(−c a − d

0 c

)(
ā c̄

b̄ d̄

)}
01

= −τ 2

2(1 + e−βE)

{|a|2 + |b|2 + |c|2 + |d|2 − 2ād

+ e−βE
(|a|2 + |b|2 + |c|2 + |d|2 − 2ad̄

)}

≤ −τ 2

2

(|b|2 + |c|2) < 0,

whereas Re〈u10|δeff|u10〉 equals

−τ 2

2(1 + e−βE)

{(
ā c̄

b̄ d̄

)(
c 0

d − a −c

)(
b̄ 0

d̄ − ā −b̄

)(
a b

c d

)

+ e−βE

(
a b

c d

)(
b̄ 0

d̄ − ā −b̄

)
− e−βE

(
c 0

d − a −c

)(
ā c̄

b̄ d̄

)}
10

= −τ 2

2(1 + e−βE)

{|a|2 + |b|2 + |c|2 + |d|2 − 2ad̄

+ e−βE
(|a|2 + |b|2 + |c|2 + |d|2 − 2ād

)}

≤ −τ 2

2

(|b|2 + |c|2) < 0.

�
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Appendix: The Dyson Series

In this appendix we collect the results we need on the perturbation series known as the Dyson
series. Proofs can be found in [6], for example.

Theorem 6 Let X be a Banach space with predual X∗ and

A0 : domA0 ⊆ X → X

the generator of a ∗-weakly-continuous semigroup {St }t∈R+ . Consider the perturbation
A(ε) = A0 + εA1, where A1 ∈ B(X). We have that A(ε) generates a ∗-weakly-continuous
semigroup too, which we will denote by {S(ε)t}t∈R+ . It satisfies

S(ε)t = St +
∑
n≥1

εn

∫ t

0
dtn · · ·

∫ t2

0
dt1 St1A1S

t2−t1A1 · · ·

× A1S
tn−tn−1A1S

t−tn .

Here, the integrals are defined pointwise in the weak-∗ topology and give a convergent series
for every ε > 0.

Remark 11 Given any one-parameter ∗-weakly-continuous semigroup, there always exist
constants M ≥ 1 and β ≥ 0 such that ‖St‖ ≤ Meβt (see [6, Proposition 3.1.3]). Hence, the
n-th term

St
n =

∫ t

0
dtn · · ·

∫ t2

0
dt1 St1A1S

t2−t1A1 · · ·A1S
tn−tn−1A1S

t−tn

in the Dyson series satisfies

‖St
n‖ ≤ tn

n!M
n+1eβt‖A1‖n.

Therefore, the error after adding up the first n − 1 terms is bounded by

εntneβt
∑
k≥n

(εt)k−n

k! Mk+1‖A1‖k =: eβtfn(εt)ε
ntn, (8)

where fn : R+ → R+ is a continuous and increasing function.
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